KONTROL RUMAH KACA PADA GREENHOUSE





1. Pendahuluan [Kembali]

Kontrol rumah kaca adalah sistem yang dirancang untuk mengatur dan menjaga kondisi lingkungan di dalam rumah kaca agar optimal untuk pertumbuhan tanaman.
Sistem ini umumnya meliputi:
- Pengendalian suhu
Sensor suhu untuk memantau suhu di dalam rumah kaca.
- Pengendalian cahaya
Sensor cahaya untuk memantau intensitas cahaya di dalam rumah kaca.
- Pengendalian penyiraman:
Sensor kelembaban tanah untuk memantau kadar air di tanah.
   
Tujuan utama kontrol rumah kaca adalah untuk :
- Meningkatkan hasil panen tanaman.
- Meningkatkan kualitas tanaman.
- Mengurangi penggunaan pestisida dan pupuk.
- Menghemat air dan energi.
- Mempermudah pengelolaan rumah kaca.


2. Tujuan [Kembali]

- Mengetahui bentuk rangkaian aplikasi untuk kontrol rumah kaca menggunakan sensor pir, sensor LM35, Rain Sensor, Sensor UV, dan sensor soil moisture
- Dapat mensimulasikan rangkaian di aplikasi proteus
- Menyelesaikan tugas besar dari Bapak Darwison


3. Alat dan Bahan [Kembali]

A. Alat
  • DC Voltmeter 
    DC Voltmeter  merupakan alat yang digunakan untuk mengukur besar tengangan suatu komponen. 

  •          DC Amperemeter
    
                DC Amperemeter merupakan alat yang digunakan untuk mengukur besar arus pada suatu komponen.

  •      Power Supply


          Berfungsi sebagai sumber daya bagi rangkaian.


        1). Baterai


                Baterai pada rangkaian ini digunakan sebagai sumber energi listrik atau sumber tegangan                     untuk menjalankan rangkaian.



 B. Bahan

        1). Resistor

                

            Spesifikasi resistor



        2). Kapasitor


            Spesifikasi kapasitor


        3). Dioda


            Spesifikasi dioda


        4). Transistor 

            Spesifikasi transistor


            Konfigurasi pin


        5). Relay


            Spesifikasi

        
            Konfigurasi pin




        6). LM35



            Spesifikasi
           

  • Dikalibrasi Langsung dalam Celcius (Celcius)
  • Faktor Skala Linear + 10-mV / ° C
  • 0,5 ° C Pastikan Akurasi (pada 25 ° C)
  • Dinilai untuk Rentang Penuh −55 ° C hingga 150 ° C
  • Cocok untuk Aplikasi Jarak Jauh
  • Biaya Rendah Karena Pemangkasan Tingkat Wafer
  • Beroperasi Dari 4 V hingga 30 V
  • Pembuangan Arus Kurang dari 60-μA
  • Pemanasan Mandiri Rendah, 0,08 ° C di Udara Diam
  • Hanya Non-Linearitas ± ¼ ° C Tipikal
  • Output Impedansi Rendah, 0,1 Ω untuk Beban 1-mA 

            Konfigurasi pin




            Grafik respon



        7). Op-amp


            Spesifikasi
  • Integrated with two Op-Amps in a single package
  • Wide power supply Range
    1. Single supply – 3V to 32V
    2. Dual supply – ±1.5V to ±16V
  • Low Supply current – 700uA
  • Single supply for two op-amps enables reliable operation
  • Short circuit protected outputs
  • Operating ambient temperature – 0˚C to 70˚C
  • Soldering pin temperature – 260 ˚C (for 10 seconds – prescribed)
  • Available packages: TO-99, CDIP, DSBGA, SOIC, PDIP,  DSBGA
            
            Konfigurasi pin




        8). Potensiometer


        9). Ground




        10).     Sensor Soil Moisture

  Spesifikasi dari Sensor Soil Moisture :

  • Tegangan Operasi: 3.3V hingga 5V DC
  • Operasi Saat Ini: 15mA
  • Output Digital - 0V hingga 5V, Level pemicu yang dapat disesuaikan dari preset
  • Output Analog - 0V hingga 5V berdasarkan radiasi infra merah dari nyala api yang jatuh pada sensor
  • LED menunjukkan keluaran dan daya
  • Ukuran PCB: 3,2 cm x 1,4 cm
  • Desain berbasis LM393
  • Mudah digunakan dengan Mikrokontroler atau bahkan dengan IC Digital / Analog normal
  •  Kecil, murah, dan mudah didapat

Konfigurasi Sensor Soil Moisture  :


        11). Motor



Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

Spesifikasi


Pinout

Grafik Respons:


       













12). Op Amp - LM741

    Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.

 
Konfigurasi PIN LM741

Spesifikasi:


4. Dasar Teori [Kembali]

 a. Resistor

Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.

Simbol Resistor Sebagai Berikut :


Resistor dalam suatu teori dan penulisan formula yang berhubungan dengan resistor disimbolkan dengan huruf “R”. Kemudian pada desain skema elektronika resistor tetap disimbolkan dengan huruf “R”, resistor variabel disimbolkan dengan huruf “VR” dan untuk resistorjenis potensiometer ada yang disimbolkan dengan huruf “VR” dan “POT”.

Kapasitas Daya Resistor

Kapasitas daya pada resistor merupakan nilai daya maksimum yang mampu dilewatkan oleh resistor tersebut. Nilai kapasitas daya resistor ini dapat dikenali dari ukuran fisik resistor dan tulisan kapasitas daya dalamsatuan Watt untuk resistor dengan kemasan fisik besar. Menentukan kapasitas daya resistor ini penting dilakukan untuk menghindari resistor rusak karena terjadi kelebihan daya yang mengalir sehingga resistor terbakar dan sebagai bentuk efisiensi biaya dan tempat dalam pembuatan rangkaian elektronika.

Nilai Toleransi Resistor

Toleransi resistor merupakan perubahan nilai resistansi dari nilai yang tercantum pada badan resistor yang masih diperbolehkan dan dinyatakan resistor dalam kondisi baik. Toleransi resistor merupakan salah satu perubahan karakteristik resistor yang terjadi akibat operasional resistor tersebut. Nilai torleransi resistor ini ada beberapa macam yaitu resistor dengan toleransi kerusakan 1% (resistor 1%), resistor dengan toleransi kesalahan 2% (resistor2%), resistor dengan toleransi kesalahan 5% (resistor 5%) dan resistor dengan toleransi 10% (resistor 10%).

Nilai toleransi resistor ini selalu dicantumkan di kemasan resistor dengan kode warna maupun kode huruf. Sebagai contoh resistor dengan toleransi 5% maka dituliskan dengan kode warna pada cincin ke 4 warna emas atau dengan kode huruf J pada resistor dengan fisik kemasan besar. Resistor yang banyak dijual dipasaran pada umumnya resistor 5% dan resistor 1%.

Jenis-Jenis Resistor

Berdasarkan jenis dan bahan yang digunakan untuk membuat resistor dibedakan menjadi resistor kawat, resistor arang dan resistor oksida logam atau resistor metal film.

  1. Resistor Kawat (Wirewound Resistor)

Resistor kawat atau wirewound resistor merupakan resistor yang dibuat dengan bahat kawat yang dililitkan. Sehingga nilai resistansiresistor ditentukan dari panjangnya kawat yang dililitkan. Resistor jenis ini pada umumnya dibuat dengan kapasitas daya yang besar.

  1. Resistor Arang (Carbon Resistor)

Resistor arang atau resistor karbon merupakan resistor yang dibuat dengan bahan utama batang arang atau karbon. Resistor karbon ini merupakan resistor yang banyak digunakan dan banyak diperjual belikan. Dipasaran resistor jenis ini dapat kita jumpai dengan kapasitas daya 1/16 Watt, 1/8 Watt, 1/4 Watt, 1/2 Watt, 1 Watt, 2 Watt dan 3 Watt.

  1. Resistor Oksida Logam (Metal Film Resistor)

Resistor oksida logam atau lebih dikenal dengan nama resistor metal film merupakan resistor yang dibuah dengan bahan utama oksida logam yang memiliki karakteristik lebih baik. Resistor metal film ini dapat ditemui dengan nilai tolerasni 1% dan 2%. Bentuk fisik resistor metal film ini mirip denganresistor kabon hanya beda warna dan jumlah cicin warna yang digunakan dalam penilaian resistor tersebut. Sama seperti resistorkarbon, resistor metal film ini juga diproduksi dalam beberapa kapasitas daya yaitu 1/8 Watt, 1/4 Watt, 1/2 Watt. Resistor metal film ini banyak digunakan untuk keperluan pengukuran, perangkat industri dan perangkat militer.

Kemudian berdasarkan nilai resistansinya resistor dibedakan menjadi 2 jenis yaitu resistor tetap (Fixed Resistor) dan resistor tidak tetap (Variable Resistor)

  1. Resistor Tetap(Fixed Resistor)

Resistor tetap merupakan resistor yang nilai resistansinya tidap dapat diubah atau tetap. Resistor jenis ini biasa digunakan dalam rangkaian elektronika sebagai pembatas arus dalam suatu rangkaian elektronika. Resistor tetap dapat kita temui dalam beberpa jenis, seperti :

  • Metal Film Resistor
  • Metal Oxide Resistor
  • Carbon Film Resistor
  • Ceramic Encased Wirewound
  • Economy Wirewound
  • Zero Ohm Jumper Wire
  • S I P Resistor Network
  1. Resistor Tidak Tetap (Variable Resistor)

Resistor tidak tetap atau variable resistor terdiridari 2 tipe yaitu :

  • Pontensiometer, tipe variable resistor yang dapat diatur nilai resistansinya secara langsung karena telah dilengkapi dengan tuas kontrol. Potensiometer terdiri dari 2 jenis yaitu Potensiometer Linier dan Potensiometer Logaritmis
  • Trimer Potensiometer, yaitu tipe variable resistor yang membutuhkan alat bantu (obeng) dalam mengatur nilai resistansinya. Pada umumnya resistor jenis ini disebut dengan istilah “Trimer Potensiometer atau VR”
  • Thermistor, yaitu tipe resistor variable yangnilairesistansinya akan berubah mengikuti suhu disekitar resistor. Thermistor terdiri dari 2 jenis yaitu NTC dan PTC. Untuk lebih detilnya thermistor akan dibahas dalam artikel yang lain.
  • LDR (Light Depending Resistor), yaitu tipe resistor variabel yang nilai resistansinya akan berubah mengikuti cahaya yang diterima oleh LDR tersebut.

Jenis-jenis resistor tetap dan variable diatas akan dibahas lebih detil dalam artikel yang lain.

Menghitung Nilai Resistor

Nilai resistor dapat diketahui dengan kode warna dan kode huruf pada resistor. Resistor dengan nilai resistansi ditentukan dengan kode warna dapat ditemukan pada resistor tetap dengan kapasitas daya rendah, sedangkan nilai resistor yang ditentukan dengan kode huruf dapat ditemui pada resistor tetap daaya besar dan resistor variable.

Kode Warna Resistor

Cicin warna yang terdapat pada resistor terdiri dari 4 ring 5 dan 6 ring warna. Dari cicin warna yang terdapat dari suatu resistor tersebut memiliki arti dan nilai dimana nilai resistansi resistor dengan kode warna yaitu :

kode warna resistor,rumus resistor,warna resistor

  1. Resistor Dengan 4 Cincin Kode Warna

Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.

  1. Resistor Dengan 5 Cincin Kode Warna

Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.

  1. Resistor Dengan 6 Cincin Warna

Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.

Kode Huruf Resistor

Resistor dengan kode huruf dapat kita baca nilai resistansinya dengan mudah karenanilia resistansi dituliskan secara langsung. Pad umumnya resistor yang dituliskan dengan kode huruf memiliki urutan penulisan kapasitas daya, nilai resistansi dan toleransi resistor. Kode huruf digunakan untuk penulisan nilai resistansi dan toleransi resistor.


Kode Huruf Untuk Nilai Resistansi :

  • R, berarti x1 (Ohm)
  • K, berarti x1000 (KOhm)
  • M, berarti x 1000000 (MOhm)

Kode Huruf Untuk Nilai Toleransi :

  • F, untuk toleransi 1%
  • G, untuk toleransi 2%
  • J, untuk toleransi 5%
  • K, untuk toleransi 10%
  • M, untuk toleransi 20%

Rumus Resistor:

    Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :


Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan


Mencari resistansi total dalam rangkaian dapat menggunakan :

Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n


        2). Kapasitor

    Kapasitor adalah komponen elektronika yang dapat menyimpan energi arus listrik. Alessandro Volta adalah seorang ilmuwan dari negara Italia pernah menyatakan bahwa "semua benda yang dapat menyimpan energi disebut condensatore". Oleh karena itu kapasitor yang memiliki ukuran besar dalam mikrofarad (uF), sering disebut kondensator. Kapasitor disebut komponen pasif karena akan bekerja ketika diberi arus listrik, besar energi yang disimpan oleh sebuah kapasitor ditentukan oleh besar nilai kapasitor dan waktu pengisian kapasitor.

    Konstruksi dasar dari sebuah kapasitor dibuat dari 2 lempengan plat logam yang dipasang sejajar tetapi tidak saling berhubungan, lempengan tersebut disekat/diisolasi oleh lapisan bahan dielektrik, Jenis bahan dielektrik inilah yang menentukan spesifikasi dan juga nama dari jenis kapasitor tersebut, seperti: mika, polyster, keramik, dan gel cair seperti yang digunakan pada electrolit kapasitor (ELKO). Lempengan plat logam dibentuk sesuai dengan model kapasitor, sedangkan besar nilai kapasitansi dan rating tegangan kapasitor ditentukan oleh konstruksi lempengan plat logam dan lapisan isolasi (Dielektrik).

Konstruksi kapasitor
Konstruksi kapasitor

Cara Kerja Kapasitor

    Jika muatan positip (+) diberikan pada salah satu plat dan plat yang lain diberi muatan negatip (-) maka sifat muatan pada kondisi ini akan saling tarik menarik, tetapi karena adanya lapisan isolasi elektron-elektron itu tertahan dan tidak akan pernah mengalir, sehingga muatan listrik akan terjebak pada masing-masing plat dan terserap keseluruh kepingan plat, kepingan plat membutuhkan waktu untuk mengisi muatan (Charge) sehingga mencapai tegangan maksimum yang diberikan, dan selama tidak ada rangkaian konduksi yang dapat menarik atau mengeluarkan muatan listrik dari kapasitor, muatan listrik akan terus tersimpan pada kapasitor.


Sifat Kapasitor

    Kapasitor bersifat menahan arus DC dan melewatkan arus AC. Jika dialiri arus DC maka arus akan diserap oleh kapasitor sehingga mencapai tegangan maksimum power supply (Full Charge), dan karena dihalangi oleh lapisan isolasi yang bersifat non konduktif, arus DC tidak akan pernah tembus mengalir pada kapasitor.. Dan ketika kapasitor dialiri arus AC maka lapisan isolasi dapat ditembus oleh perubahan elektron dari sinyal ac dengan resistansi yang sangat kecil bahkan  tidak ada resistansi (tanpa tahanan) dan sering digunakan sebagai kopling pada rangkaian audio.


Jenis dan Simbol Kapasitor

Non Polar
Adalah jenis kapasitor tanpa polaritas, artinya pemasangan dibolak-balik tidak masalah. Kapasitor jenis ini umumnya memiliki nilai kapasintansi yang kecil antara pikofarad dan nanofarad. Contoh kapasitor non polar adalah: kapasitor keramik, mika, dan polyester.

Bipolar
Adalah jenis kapasitor yang memiliki polaritas positif dan negatif. Hati-hati saat pemasangan kapasitor jenis ini karena jika dipasang terbalik akan merusak kapasitor bahkan bisa menimbulkan ledakan. Contoh kapasitor bipolar adalah: Elektrolit kapasitor (ELKO), dan kapasitor tantalum.

Variable kapasitor
Kapasitor ini umumnya jenis nonpolar, biasa dipakai untuk penalaan radio frekuensi pada rangkaian oscilator, contoh kapasitor ini adalah: VARCO dan kapasitor trimer.
      Jenis dan Simbol Kapasitor
      Simbol dan Jenis kapasitor




      Cara Membaca dan Menghitung Nilai Kapasitor berdasarkan Kode Angka dan Huruf-nya.

      Satuan Kapasitansi Kapasitor adalah Farad, tetapi Farad merupakan satuan yang besar untuk sebuah Kapasitor yang umum dipakai oleh Peralatan Elektronik. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Farad menjadi pilihan utama produsen dalam memproduksi sebuah Kapasitor agar dapat digunakan oleh peralatan Elektronika. Satuan-satuan tersebut diantaranya adalah : Micro Farad (µF), Nano Farad (nF) dan Piko Farad (pF ).

      Berikut ini adalah ukuran turunan Farad yang umum digunakan dalam menentukan Nilai Kapasitansi sebuah Kapasitor :

      1 Farad          = 1.000.000µF (mikro Farad)
      1µF                = 1.000nF (nano Farad)
      1µF                = 1.000.000pF (piko Farad)
      1nF                = 1.000pF (piko Farad)

      Cara Membaca Nilai Kapasitor Elektrolit (ELCO)

          Untuk Kapasitor Elektrolit atau ELCO, nilai Kapasitansinya telah tertera di label badannya dengan jelas. Jadi sangat mudah untuk menentukan nilainya. Contoh 100µF 16V, 470µF 10V, 1000µF 6.3V ataupun 3300µF 16V. 

      Cara Membaca Nilai Kapasitor Keramik, Kapasitor Kertas dan Kapasitor non-Polaritas lainnya

      Untuk Kapasitor Keramik, Kapasitor Kertas, Kapasitor Mika, Kapasitor Polyester atau Kapasitor Non-Polaritas lainnya, pada umumnya dituliskan Kode Nilai dibadannya. Seperti 104J, 202M, 473K dan lain sebagainya. Maka kita perlu menghitungnya ke dalam nilai Kapasitansi Kapasitor yang sebenarnya.

      Contoh untuk membaca Nilai Kode untuk Kapasitor Keramik diatas dengan Tulisan Kode 473Z. Cara menghitung Nilai Kapasitor berdasarkan kode tersebut adalah sebagai berikut :

      Kode : 473Z
      Nilai Kapasitor = 47 x 103
      Nilai Kapasitor = 47 x 1000
      Nilai Kapasitor = 47.000pF atau 47nF atau 0,047µF

      Huruf dibelakang angka menandakan Toleransi dari Nilai Kapasitor tersebut, Berikut adalah daftar Nilai Toleransinya :

      B = 0.10pF
      C = 0.25pF
      D = 0.5pF
      E = 0.5%
      F = 1%
      G= 2%
      H = 3%
      J = 5%
      K = 10%
      M = 20%
      Z = + 80% dan -20%

      473Z = 47,000pF +80% dan -20% atau berkisar antara 37.600 pF ~ 84.600 pF.
      Jika di badan badan Kapasitor hanya bertuliskan 2 angka, Contohnya 47J maka perhitungannya adalah sebagai berikut :

      Kode : 47J

      Nilai Kapasitor = 47 x 100
      Nilai Kapasitor = 47 x 1
      Nilai Kapasitor = 47pF

      Jadi Nilai Kapasitor yang berkode 47J adalah 47 pF ±5% yaitu berkisar antara 44,65pF ~ 49,35pF

      Jika di badan Kapasitor tertera 222K maka nilai Kapasitor tersebut adalah :

      Kode : 222K

      Nilai Kapasitor = 22 x 102
      Nilai Kapasitor = 22 x 100
      Nilai Kapasitor = 2200pF

      Toleransinya adalah 5% :
      Nilai Kapasitor = 2200 – 10% = 1980pF
      Nilai Kapasitor = 2200 + 10% = 2420pF

      Jadi Nilai Kapasitor dengan Kode 222K adalah berkisar antara 1.980 pF ~ 2.420 pF.


        Rangkaian Seri-Paralel Kapasitor

        Rangkaian kapasitor bisa dibuat secara seri atau paralel,sehingga dapat menghasilkan nilai kapasitansi baru yang tidak ada dipasaran.

        Rangkaian Kapasitor


        Untuk menghitung total kapasitansi rangkaian seri berlaku rumus:


        Ctotal (Ct) = 1/C1+1/C2+1/C3
         

        Dan untuk menghitung total kapasitansi rangkaian parallel berlaku rumus:


        Ctotal (Ct) = C1+C2+C3


                3). Dioda

            Dioda atau disebut juga sinyal dioda adalah komponen dasar semikonduktor aktif yang hanya bisa mengalirkan arus satu arah saja (forward bias) yaitu dari arah positip (Anoda) ke arah negatif (Katoda) namun memblok arus untuk arah sebaliknya. Dalam rangkaian elektronika dioda diibaratkan sebagai kran/katup listrik satu arah. Dioda memiliki dua elektroda yaitu elektroda positip (Anoda) dan elektroda negatif (Katoda). Secara umum dioda biasa dipakai untuk merubah arus bolak-balik (AC) menjadi arus searah (DC) atau disebut sebagai Rectifier.

            Dioda dibuat dari bahan semikonduktor seperti germanium (Ge), Silicon (Si) dan galium arsenide (GaAs), sifat listrik pada jenis material tersebut ialah menengah atau dengan kata lain tidak baik sebagai konduktor dan tidak baik juga sebagai insulator, sifat ini dinamakan semikonduktor.

            Material semikonduktor memiliki sangat sedikit "elektron bebas" karena molekul atomnya terkumpul bersama dalam bentuk pola kristal yang sering disebut "kisi kristal". Untuk meningkatkan daya hantar listrik pada material ini maka perlu dicampurkan "kotoran atom" pada struktur kristalnya sehingga menghasilkan lebih banyak elektron bebas dan lubang atom. Untuk menghasilkan sisi Negatif (katoda) pada dioda maka material semikonduktor biasanya dicampurkan kotoran atom dengan bahan seperti: Arsenik, Antimony atau Fosfor. dan untuk menghasilkan sisi positip (Anoda) dicampur dengan kotoran atom dari bahan Aluminium, Boron atau Galium. 

        Jenis dan Simbol Dioda

        Seperti penjelasan diatas, Jenis dioda tergantung dari bahan material yang dipakai saat pembuatannya, dibawah ini adalah contoh gambar dan simbol dari jenis-jenis dioda:

        Jenis dan Simbol Dioda


        1. Dioda Silicon
            Terbuat dari bahan Germanium, memiliki drop tegangan maju (forward volt drop) 0,7V, pada rangkaian elektronika biasa dipakai sebagai penyearah (rectifier). Contoh dioda Germanium adalah: 1N4000 series dan 1N5000 series dll.

        2. Dioda Germanium
            Terbuat dari bahan Silicon, memiliki drop tegangan maju (forward volt drop) 0,3V. Biasa diaplikasikan sebagai dioda penyearah. contoh dioda silicon adalah: IN4148 atau 1N914 dll.

        3. Dioda Zener
            Terbuat dari bahan silikon, dioda zener atau sering disebut juga "breakdown diode" berfungsi sebagai pembatas tegangan pada rangkaian, atau dengan kata lain dioda zener adalah komponen regulator tegangan sederhana.  dioda zener memiliki rating tegangan antara 1 sampai ratusan volt dengan daya mulai dari 1/4w.

        4. Light Emitting Diode atau LED
            Adalah jenis dioda yang dapat mengeluarkan cahaya, LED yang banyak dipasaran berbentuk kubah bulat dan juga kotak persegi dengan variasi warna merah, kuning, hijau, biru atau putih. batas arus maksimum LED adalah 20mA. dan memiliki drop tegangan maju (forward volt drop) antara 1,2v sampai 3,6v tergantung dari jenis warna LED.

        5. Dioda Schottky
            disebut juga dioda power memiliki drop tegangan maju (forward bias) yang rendah, namun rating arus dan tegangannya tinggi. Biasa dipakai sebagai penyearah pada frekuensi tinggi, sering dipakai pada rangkaian pengisian battre, AC Rectifier dan Inverter.contoh untuk dioda schotky adalah 5819 atau 58xx dll.

                
                4). Transistor

            Transistor adalah komponen semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

            Transistor Bipolar adalah salah satu jenis transistor yang terbentuk dari 2 dioda sehingga memiliki polaritas atau sisi positif dan sisi negatif. Biasanya transistor Bipolar atau disebut dengan BJT (Basis Junction Transistor) memiliki 2 jenis, diantaranya yaitu Transistor PNP dan Transistor NPN. Transistor ini memiliki 3 polaritas yang biasa disebut B (Basis), E (Emiter), C (Collector). Basis berfungsi sebagai base atau tempat berkumpulnya kumpulan aliran arus yang masuk ke transistor, Emiter dan Collector sebagai aliran arus masuk dan keluar.

        Lambang Transistor BJT


        Sudah jelas seperti gambar di atas bahwa transistor PNP memiliki simbol yang arah panahnya masuk dan sebaliknya untuk NPN arah panah dari emiter mengarah keluar.

        Bentuk aliran arus pada sebuah transistor dapat dirumuskan dengan hukum KCL ( Kirchoff Current Law) Atau hukum Kirchoff I, yang dirumuskan sebagai berikut.

        Ie = Ic Ib  

        Keterangan : 
        Ie = Arus Emitter
        Ic = Arus Collector
        Ib = Arus Basis

        Pada Transistor BJT nilai arus Ib relatif sangat kecil terhadap Ic, maka Ib ini dapat diabaikan. Sehingga persamaan diatas bisa berubah menjadi

        Ie = Ic

        Keterangan :
        Ie = Arus Emitter
        Ic = Arus Collector

        Karakteristik input merupakan karakteristik dari tegangan base dan emitter (VBE) sebagai fungsi arus base (IB) dengan VCE dalam keadaan konstan. Karakteristik ini merupakan karakteristik dari junction emitter-base dengan forward bias atau sama dengan karakteristik diode pada forward bias. Pada BJT seluruh pembawa muatan akan melewati junction Base-Emittor menuju Collector maka arus pada basis menjadi jauh lebih kecil dari diode P-N dengan adanya faktor hfe. Penambahan nilai VCE megakibatkan arus IB akan berkurang. Arus IB akan mengalir jika tegangan VBE > 0,7 V

        Karakteristik output merupakan karakteristik dengan tegangan emitter (VCE) sebagai fungsi arus kolektor (IC) terhadap arus base (IB) yang tetap seperti ditunjukkan pada Gambar 4. Pada saat IB=0, arus IC yang mengalir adalah arus bocor ICB0 (pada umumnya diabaikan), sedangkan pada saat IB ≠ 0 untuk VCE kecil (<< 0,2 V), pembawa muatan di basis tidak efisien dan transistor dikatakan dalam keadaan saturasi dengan IB > IC / hfe . Pada saat VCE diperbesar IC pun naik hingga melewati level tegangan VCE saturasi (0,2 -1 V) hingga transistor bekerja dalam daerah aktif dengan IB = IC / hfe. Pada saat ini kondisi arus IC relatif konstan terhadap variasi tegangan VCE.

        Gelombang input dan output transistor


                

        Jenis - jenis konfigurasi transistor :




         
        5). Op-amp


            Operasional amplifier (Op-Amp) adalah suatu penguat berpenguatan tinggi yang terintegrasi  dalam sebuah chip IC yang memiliki dua input inverting dan non-inverting dengan sebuah terminal output, dimana rangkaian umpan balik dapat ditambahkan untuk mengendalikan karakteristik tanggapan keseluruhan pada operasional amplifier (Op-Amp). Pada dasarnya operasional amplifier (Op-Amp) merupakan suatu penguat diferensial yang memiliki 2 input dan 1 output. Op-amp ini digunakan untuk membentuk fungsi-fungsi linier yang bermacam-mcam atau dapat juga digunakan untuk operasi-operasi tak linier, dan seringkali disebut sebagai rangkaian terpadu linier dasar. Penguat operasional (Op-Amp) merupakan komponen elektronika analog yang berfungsi sebagai amplifier multiguna dalam bentuk IC dan memiliki simbol sebagai berikut : 

        Jenis - jenis Op-Amp :

        Inverting Amplifier


        Rumus:


        NonInverting 


        Rumus:


        Komparator


        Rumus:


        Adder


        Rumus:


        Bentuk Gelombang

         



                6). LM35

            Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.
            Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan kesensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5ºC pada suhu 25ºC 

        Simbol LM35 di proteus :



        Grafik respon





                7). Relay

            Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

        Simbol di proteus


                8). Ground

          Suatu komponen listrik yang bisa meniadakan beda potensial sebagai pelepasan muatan listrik berlebih pada suatu instalasi listrik dengan cara mengalirkannya ke tanah.

        Simbol di proteus




                9). Power Supply

            Catu daya merupakan suatu Rangkaian yang paling penting bagi sistem elektronika. Power supply atau catu daya adalah suatu alat atau perangkat elektronik yang berfungsi untuk merubah arus AC menjadi arus DC untuk memberi daya suatu perangkat keras lainnya. Sumber AC yaitu sumber tegangan bolak-balik, sedangkan sumber tegangan DC merupakan sumber tegangan searah. Power supply/unit catu daya secara efektif harus mengisolasi rangkaian internal  dari  jaringan  utama,  dan  biasanya  harus  dilengkapi  dengan pembatas  arus  otomatis  atau  pemutus  bila  terjadi  beban  lebih  atau hubung  singkat.  Bila  pada  saat  terjadinya  kesalahan  catu  daya, tegangan  keluaran DC meningkat  di  atas  suatu  nilai  aman maksimum untuk rangkaian internal, maka daya secara otomatis harus diputuskan.

        Simbol di proteus


        • Sensor Soil Moisture
                    Soil Moisture Sensor merupakan module untuk mendeteksi kelembaban tanah, yang dapat diakses menggunakan microcontroller seperti arduino.Sensor kelembaban tanah ini dapat dimanfaatkan pada sistem pertanian, perkebunan, maupun sistem hidroponik mnggunakan hidroton.

                    Soil Moisture Sensor dapat digunakan untuk sistem penyiraman otomatis atau untuk memantau kelembaban tanah tanaman secara offline maupun online. Sensor yang dijual pasaran mempunyai 2 module dalam paket penjualannya, yaitu sensor untuk deteksi kelembaban, dan module elektroniknya sebagai amplifier sinyal.


        Logo Sensor Soil Moisture di proteus: 



        5. Percobaan [Kembali]

         A. Prosedur Percobaan

        a. Untuk membuat rangkaian ini, pertama, siapkan semua alat dan bahan yang bersangkutan, di ambil dari library proteus
        b. Letakkan semua alat dan bahan sesuai dengan buku/ebook/pdf referensi dimana alat dan bahan terletak.
        c. Tempatkan posisi letak nya dengan gambar rangkaian
        d. Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh 
        e. Lalu mencoba menjalankan rangkaian , jika tidak terjadi error, maka motor akan bergerak yang berarti rangkaian pada Tugas Besar (Kontrol Penyiram Tanaman) bekerja.


        B. Prinsip Kerja

        Gambar Rangaian:

           



         1. Sensor soil moisture



        Prinsip kerja :
        Soil moisture sensor akan mendeteksi kelembaban dalam tanah. . Sensor ini terdiri dua probe untuk melewatkan arus melalui tanah, kemudian membaca resistansinya untuk mendapatkan nilai tingkat kelembaban. Semakin banyak air membuat tanah lebih mudah menghantarkan listrik (resistansi kecil), sedangkan tanah yang kering sangat sulit menghantarkan listrik (resistansi besar). Sehingga sensor akan merespon hal ini arus tersebut keluar dari tegangan input sensor sebesar 5 V  sehingga terbacalah kelembaban tanah setelah itu sensor akan mersepon hal tersebut AO (Output Analog ) sehingga arus akan mengalir ke indukuktor menuju opamp kaki op amp (+) akan merespon kelembabapan yg telahterukur sedangkan (-) akan meneruskan sinyal menuju diode dan relay jika parameter kelembabpan sudah dirasa cukup maka ralay akan switch dan menyebabkan hidupnya pompa air

        2. Sensor Cahaya
             



        prinsip kerja :Sensor cahaya pada Proteus bekerja berdasarkan prinsip perubahan resistansi atau tegangan yang terjadi akibat intensitas cahaya yang diterima. Sensor cahaya, seperti LDR (Light Dependent Resistor) atau fotodioda, memiliki resistansi yang berubah seiring dengan intensitas cahaya yang mengenai sensor. Dalam kondisi terang, resistansi LDR menurun, sementara dalam kondisi gelap, resistansinya meningkat. Perubahan resistansi ini diterjemahkan menjadi perubahan tegangan dalam rangkaian, yang kemudian dibaca oleh mikrokontroler atau rangkaian pengendali lainnya.


        3. Rain Sensor




        Prinsip kerja : Rain sensor bekerja dengan mendeteksi perubahan resistansi yang terjadi ketika air hujan jatuh pada permukaan sensornya yang terdiri dari jejak tembaga. Air yang menghubungkan jalur tembaga tersebut mengurangi resistansi, yang kemudian diterjemahkan menjadi perubahan tegangan oleh komparator dalam modul sensor. Output ini dapat berupa tegangan analog pada motor.

        4. Sensor Pir



        prinsip kerja :
        sensor pir mendeteksi barang atau adanya orang di depan pintu maka sensor pir akan aktif sehingga membuka pintu kembali.
        Sensor pir mendeteksi adanya orang didepan pintu yang ditandai dengan test spin berlogika 1 maka akan mengeluarkan output sebesar 5 volt kemudian di umpankan ke R1 menuju kaki non inverting karena ini rangkaiannya non inverting adder amplifier maka di dapat rumus Vi= R2I+V2 dimana R2= 10k, I=0, 15mA dan V2=2 volt sehingga di dapatkan tegangan input sebesar 3,5 volt kemudian di umpankan ke Rf2=10k sehingga mengeluarkan tegangan puput dengan rumus Volt=((Rf/Ri) +1). Vi maka Vout=7 volt


        5. Sensor LM35

        Prinsip Kerja :
        Sensor LM35 Ketika suhu lingkungan di dalam greenhouse tinggi atau suhu lingkungan panas, maka sensor LM35 akan mendeteksinya. Tegangan akan masuk menuju op amp, kemuadian menuju resistor, menujut transistor, dan menuju ke kaki relay. Saat suhu lingkungan tinggi, relay akan dalam keadaan on, yang membuat kipas atau pendingin ruangan akan hidup, sebaliknya apabila suhu tidak terlalu panas, relay akan dalam keadaan off, yang membuat kipas atau pendingin ruangan akan mati.


        C. Video Penjelasan





        6. Link Download [Kembali]

        • Download File Rangkaian [klik]
        • Download Video Simulasi [klik]
        • Download Datasheet Resistor [klik]
        • Download Datasheet Transistor 2N1711 [klik]
        • Download Datasheet Transistor 2N2369 [klik]
        • Download Datasheet Op-amp 741[klik]
        • Download Datasheet Potensiometer [klik]
        • Download Datasheet Kapasitor [klik]
        • Download Datasheet Dioda [klik]
        • Download Datasheet Relay [klik]
        • Download Datasheet LM35 [klik]
        • Download Datasheet soil moisture [klik]
        • Download Datasheet pir sensor [klik]
        • Download Datasheet Rain Sensor [klik]
        • Download Datasheet UV Sensor [klik]
        • Download Datasheet fan dc [klik]
        • Download Datasheet logicstate [klik]
        • Download Datasheet pot hg [klik]
        • Download Datasheet vsine [klik]
        • Library Soil Moisture Sensor [klik]
        • Library Rain Sensor [klik]
        • Library PIR Sensor [klik]

        Komentar

        Postingan populer dari blog ini